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ABSTRACT

In this paper, very simple sufficient conditions for the irreducibility of

f(Xr) over an arbitrary unique factorization domain Z are established.

1. Introduction

We fix throughout this work a unique factorization domain Z with field of

fractions Q. The group of units of Z will be denoted by U .

Let f(X) be any polynomial in Z[X ] of positive degree that is irreducible

in Z[X ]. Using the well-known Eisenstein’s criterion we can easily show

that, in some cases, f(Xr) will also be irreducible in Z[X ] for any

positive integer r. However, this is not true in general. For example, f(X) =

X3 − X2 − 2X − 1 is irreducible in Z[X ] for Z ∈ {Z, Z2, Z5}, while f(X2) =

(X3 − X2 − 1)(X3 + X2 + 1).

In the main result of this work we will establish sufficient conditions for

irreducibility of f(Xr) in Z[X ] for any integer r > 1 that, besides U , depend

only on r, the degree of f(X) and the leading and constant coefficients of f(X).

(These conditions can be easily checked if Z is an effective unique factorization

domain.) Elementary necessary and sufficient conditions will also be given.

(The adjective “elementary” refers to the fact that these conditions will be

stated without using proper algebraic extensions of Q.) The cases f(X) = X−a
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and f(X) = aX2 + bX + c are considered in [1, pp. 63–74]. Related results for

polynomials over finite fields can be found in [7, pp. 93–95].

Henceforth we will use, for S ⊆ Q and t ∈ N, the following notation:

S∗ = S \ {0}, St = {st : s ∈ S}, tS = {ts : s ∈ S}.

Our main result is the following theorem. (It will be proved, together with

an equivalent dual version, in the last section of this paper.)

Theorem 1.1: Let r be any integer, r > 1, and let f(X) be an arbitrary

polynomial in Z[X ] of positive degree m, leading coefficient a and nonzero

constant term b that is irreducible in Z[X ]. Assume that the following condition

is satisfied:

Condition: C(m, a, b, r). For each prime p dividing r and any unit u in U at

least one of the two following conditions holds:

(A) ua /∈ Zp;

(B) (i) (−1)mub /∈ Zp and (ii) ub /∈ Z2, if 4|r.
Then

f(Xr) is irreducible in Z[X ].

Remark: (I) It is well-known that for any r ∈ N the polynomials f(Xr) =
∑m

j=0 ajX
rj (a = am, b = a0) and f̃(Xr) =

∑m
j=0 ajX

r(m−j) are both irre-

ducible, or both reducible in Z[X ]. However, we cannot expand Theorem 1.1

using this fact, because both C(m, a, b, r) and C(m, b, a, r) are logically equiva-

lent to the following symmetrical (with respect to a and b) condition:

Condition: C’(m, a, b, r). For each prime p dividing r and any unit u in U the

two following conditions are satisfied:

(A′) (i) ua /∈ Zp or (ii) (−1)mub /∈ Zp;

(B′) (B′) [(i) ua /∈ Z2 or (ii) ub /∈ Z2], if 4|r.

(II) For any integer t, any two of the three following statements implies the

third:

ua ∈ Zt, ±ub ∈ Zt, ±b/a ∈ Qt.

Therefore we can replace condition (B) of C(m, a, b, r) by the following one (this

is obvious if condition (A) holds):

(B′) (i) (−1)m b
a /∈ Qp and (ii) b

a /∈ Q2, if 4|r.
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2. Basic facts

In this section we review some elementary facts which we will use later without

specific reference.

First, we remind the reader that the characteristic of Z, say χ(Z), is the only

nonnegative integer that satisfies the following two conditions:

(a) χ(Z) · 1 = 0; (b) if k ∈ Z and k · 1 = 0, then χ(Z)|k.

The following basic fact is needed to prove Corollary 4.6 below.

• either χ(Z) = 0, or χ(Z) = p is a prime number in which case we have

(x1 + · · · + xn)p = xp
1 + · · · + xp

n for all n ∈ N and any x1, . . . , xn ∈ Z.

We also recall that a nonzero polynomial f(X) ∈ Z[X ] \U is called reducible

in Z[X ] if there exist nonzero polynomials g(X), h(X) in Z[X ] \ U such that

f(X) = g(X)h(X). Otherwise f(X) is called irreducible in Z[X ]. The con-

tent of f(X), say c(f), is the greatest common divisor of their coefficients

(modulo units of Z), and f(X) is called primitive if c(f) = 1. Replacing Z by

Q in this definition yields (since in this case U = Q∗) that f(X) is irreducible

in Q[X ] if and only if f(X) has positive degree and there are no polynomials

g(X), h(X) in Q[X ] of positive degree such that f(X) = g(X)h(X).

The following result is also well-known the following result (see, for example,

[6, pp. 80–84]):

• if f(X) ∈ Z[X ] has positive degree, then, f(X) is irreducible in Z[X ]

if and only if f(X) is primitive (in Z[X ]) and irreducible in Q[X ].

As a consequence, when f(X) ∈ Z[X ] has positive degree and it is irreducible

in Z[X ] we can replace Z[X ] by Q[X ] without risk in any of the expressions,

“f(Xr) is reducible in Z[X ]”, “f(Xr) is irreducible in Z[X ]”. To simplify, in

these situations we will write “f(Xr) is reducible” or “f(Xr) is irreducible”,

respectively. For the same reason, except where the contrary is explicitly stated,

the terms “primitive” and “prime” will be understood to apply to the sets Z[X ]

and N, respectively.

We will use matrices and determinants as well. Mm(Q), |A| and ∆A(X) will

respectively denote the ring of square matrices of order m with coefficients in

Q, the determinant of A ∈ Mm(Q) and the characteristic polynomial of A. In

particular, we will consider a well-known type of matrices associated to poly-

nomials.
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Let f(X) be an arbitrary polynomial in Q[X ] of positive degree m, say f(X)=
∑m

j=0 ajX
j, and let f∗(X) denote the monic polynomial associate to f(X), that

is, f∗(X) =
∑m

j=0 cjX
j , where cj =aj/am for j= 0, 1, . . . , m. The companion

matrix of f∗(X), say Cf∗ , is the matrix in Mm(Q) defined by

Cf∗ =

















0 1 . . . 0 0

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1

−c0 −c1 . . . −cm−2 −cm−1

















.

We will freely use the following properties of Cf∗ :

• f∗(X) is both the minimum polynomial of Cf∗ over Q and the charac-

teristic polynomial of Cf∗ (so f(X) = am|XIm − Cf∗ |).
• If f(X) is irreducible, then the ring Q[Cf∗ ] = {h(Cf∗) : h(X) ∈ Q[X ]}

is an extension field of Q of degree m with f(Cf∗) = amf∗(Cf∗) = O.

(In this situation, as usual, we will write Q(Cf∗) instead of Q[Cf∗ ].)

3. Preliminary results

Our irreducibility criteria strongly depend on two beautiful theorems of A.

Capelli (which are included in the author’s Ph.D. Thesis, Melbourne University,

1955; see [1, pp. 63–64] and [2, Vol. 2, p. 212]). The first one gives non-

elementary, necessary and sufficient conditions for irreducibility of f(g(X)) in

Q[X ].

Capelli’s Theorem 1: Let f(X), g(X) be arbitrary polynomials of Q[X ] of

positive degree. Let F be any splitting field of f(X) over Q, and let α be any

root of f(X) in F . Then f(g(X)) is irreducible in Q[X ] if and only if f(X) is

irreducible in Q[X ] and g(X) − α is irreducible in Q(α)[X ].

The second establishes simple conditions for reducibility of Xn − a in Q[X ].

Capelli’s Theorem 2: Let a be any nonzero element of Q, and let n be any

integer greater than 1. Then Xn − a is reducible in Q[X ] if and only if either

(i) a = ct for some c ∈ Q and t|n with t > 1, or (ii) 4|n and a = −4c4 for some

c ∈ Q.
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4. Necessary and sufficient conditions

In order to prove the main theorem of this section we first establish a result

involving primitive polynomials which is interesting in its own right.

Lemma 4.1: Suppose that P (X) =
∑m

k=0 akXk is a primitive polynomial of

Z[X ] of degree m with a0 6= 0. Let L(X) be any monic polynomial in Z[X ]

of positive degree n and nonzero roots λ1, . . . , λn in some extension field of Q

(counting multiplicities). In addition, suppose that the constant coefficient of

L(X), say c0, is relatively prime to a0. Then

n
∏

j=1

P (λjX) is a primitive polynomial of Z[X ].

Proof. Since L(X) is a monic polynomial of Z[X ], from the well-known Funda-

mental Theorem on Symmetric Polynomials it follows that
∏n

j=1 P (λjX) is a

polynomial in Z[X ], say

P ∗(X) =

mn
∑

j=0

a∗
jX

j .

Looking for a contradiction suppose c(P ∗) 6= 1. Let q be any prime of Z that

divides c(P ∗). As c(P ∗) divides a∗
0 = an

0 , so q|a0 and q 6 |c0. Thus, since P (X)

is primitive, there is a positive integer k, k ≤ m, such that q|aj for 0 ≤ j < k

and q 6 |ak. Realizing the product
∏n

j=1 P (λjX) we get

a∗
nk = an

kλk
1 · · ·λk

n +
∑

i1+···+in=nk
ij ≥ 0, j=1, ..., n

(i1,..., in) 6=(k,..., k)

ai1 · · · ain
λi1

1 · · ·λin

n .

Notice that in each summand ai1 · · · ain
λi1

1 · · ·λin
n we have ij < k for at least

one j, which makes each such summand a multiple of q. But a∗
nk is also a

multiple of q. This contradicts the fact that an
kλk

1 · · ·λk
n = (−1)nkck

0an
k is not

divisible by q.

In addition we will use the following result, which is an immediate conse-

quence of two well-known identities (see, for example, [3, (3.1.1)–(3.1.4), pp. 66–

68] and [5, (22)–(25), pp. 1, 83–84]).

Lemma 4.2: Let F be an arbitrary field and let n be any positive integer. Let

Ψ(Y ) = Y n − 1 and let w denote an arbitrary generator of the cyclic group
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constituted by the zeros of Ψ(Y ) in some extension field of F . Let g(Y ) =
∑n

j=0 cjY
j ∈ F (Y ). We have,

n−1
∏

j=0

g(wj) = |g(CΨ)| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c0 c1 . . . cn−2 cn−1

cn−1 c0 . . . cn−3 cn−2

...
...

. . .
...

...

c1 c2 . . . cn−1 c0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Now, the following theorem can be proved.

Theorem 4.3: Let r be any integer, r > 1, and let f(X) be any irreducible

polynomial in Z[X ] of positive degree m and leading coefficient a. The two

following statements are equivalent.

(a) f(Xr) is reducible.

(b) There exist a prime p that divides r, a unit u in U and polynomials

S0(X), S1(X), . . . , Sp−1(X) in Z[X ] such that either

(−1)m(p−1)uf(Xp) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S0(X
p) XS1(X

p) . . . Xp−1Sp−1(X
p)

Xp−1Sp−1(X
p) S0(X

p) . . . Xp−2Sp−2(X
p)

...
...

. . .
...

XS1(X
p) X2S2(X

p) . . . S0(X
p)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,(1)

or else

4|r and uf(X4) =

∣

∣

∣

∣

∣

S0(X
2) XS1(X

2)

XS1(X
2) S0(X

2)

∣

∣

∣

∣

∣

.(2)

Proof. Assume (a). When f(0) = 0, since f(X) is irreducible, we have

f(X) = aX with a ∈ U , so (1) follows with any prime p that divides r, u = a−1,

S1(X) = 1 and Sj(X) = 0 for j = 0, . . . , p − 1, j 6= 1. Therefore, we may also

assume f(0) 6= 0.

Let α = Cf∗ . From Capelli’s Theorem 1 it follows that Xr −α is reducible in

Q(α)[X ]. We first assume that (i) holds. Therefore we have α = γt, for some

γ ∈ Q(α) and t|r, t > 1.

Let p be any prime that divides t. Then we can write α = βp, where β =

γt/p ∈ Q(α). Hence, Xp − α is reducible in Q(α)[X ], so f(Xp) is reducible by

Capelli’s Theorem 1.

Let Ψ(X) = Xp − 1 and let w denote an arbitrary generator of the cyclic

group constituted by the zeros of Ψ(X) in some extension field of Q(α). Then
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Ψ(X) =
∏p−1

j=0(X − wj), and, therefore,

Xp − α = Xp − βp = βpΨ(β−1X) =

p−1
∏

j=0

(X − wjβ) = w
p(p−1)

2

p−1
∏

j=0

(w−jX − β)

= (−1)p−1

p−1
∏

j=0

(wjX − β).

Consequently, taking determinants on both sides, we obtain

(3) f(Xp) = (−1)m(p−1)a

p−1
∏

j=0

∆β(wjX),

where ∆β(X) = |XIm − β|, the characteristic polynomial of β, is a monic

polynomial in Q[X ] of degree m. From unique factorization in Z it follows that

there exists d ∈ Z such that P (X) = d∆β(X) belongs to Z[X ] and is primitive.

Since P (X) has leading coefficient d, letting u = dp/a, we can rewrite (3) as

follows:

(−1)m(p−1)uf(Xp) =

p−1
∏

j=0

P (wjX).(4)

The right hand side is a primitive polynomial of Z[X ], by Lemma 4.1. Hence,

since f(Xp) is also primitive (because f(X) is), u ∈ U .

On the other hand, assuming P (X) =
∑m

k=0 akXk and expressing each index

k in the form k = ip + j with 0 ≤ j < p, we can write akXk = aip+jX
ipXj for

k = 0, . . . , m. As a result, grouping the monomials associated to each Xj with

0 ≤ j < p, we obtain the polynomials

Sj(X) =
∑

i≥ 0

aip+jX
i ∈ Z[X ], j = 0, 1, . . . , p − 1,

which satisfy

P (X) =

p−1
∑

j=0

XjSj(X
p).(5)

Hence, since Cp
Ψ is the identity matrix of order p, we get

(6) P (XCΨ) =

p−1
∑

j=0

XjSj(X
p)Cj

Ψ.

Thus (1) follows from the case n = p, F = Q(X), g(Y ) = P (XY ) of Lemma 4.2.
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Now assume that condition (ii) of Capelli’s Theorem 2 holds. Then we have

4|r and α = −4γ4 for some γ ∈ Q(α). We may assume f(X2) is irreducible;

otherwise, the first case applies.

From the identity

X4 + 4γ4 = (X2 − 2γX + 2γ2)(X2 + 2γX + 2γ2)

it follows

f(X4) = a|X4Im − α| = a|X2Im − 2γX + 2γ2||X2Im + 2γX + 2γ2|.

Hence, f(X4) is reducible in Q[X ]. Consequently, condition (i) of Capelli’s

Theorem 2 is satisfied with n = 2 and g(X) = f(X2) instead of f(X). By

the first case for g(X) there exist a unit u in U and S0(X), S1(X) in Z[X ]

satisfying (1) with p = 2. Since this is the same as (2) (note that the degree of

g(X) is 2m), we have completed the proof of (b).

Assume (b). Let P (X) =
∑p−1

j=0 XjSj(X
p). Adding all other rows to the first

row of the determinant of (1) we get the row [P (X) . . . P (X)]. Hence we can

replace the determinants of (1) and (2) (with p = 2 in this case) by P (X)P ∗(X),

where

P ∗(X) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 . . . 1

Xp−1Sp−1(X
p) S0(X

p) . . . Xp−2Sp−2(X
p)

...
...

. . .
...

XS1(X
p) X2S2(X

p) . . . S0(X
p)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.(7)

Therefore, since P ∗(X) = P (−X) for p = 2, (a) follows from

(8) uf(Xr) =





















P (Xr/p)P ∗(Xr/p) if p is odd,

(−1)mP (Xr/2)P (−Xr/2) if p = 2,







if (1) holds

P (Xr/4)P (−Xr/4) otherwise.

This completes the proof of the theorem.

Our next theorem provides complementary information about the unit u and

the polynomials P (X), P ∗(X) considered in Theorem 4.3.

Theorem 4.4: Let r and f(X) be as in Theorem 4.3 and assume that condition

(b) of this theorem holds. Let P (X) =
∑p−1

j=0 XjSj(X
p) and let α, w, P ∗(X)

be as defined above.

(I) u = dp/a, where d denotes the leading coefficient of P (X).
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(II) P (X) is irreducible.

(III) P ∗(X) is irreducible if and only if Φ(X) =
∑p−1

j=0 Xj is irreducible and

Q(w) ∩ Q(α) = Q.

Proof. With Ψ(X) as defined in Theorem 4.3 we obtain from Lemma 4.2,

P (X)P ∗(X) = |P (XCΨ)| =

p−1
∏

j=0

P (wjX).

Hence, for i ∈ {1, 2}, if case (i) holds we get (note that p = 2 if i = 2)

(−1)im(p−1)uf(X ip) =

p−1
∏

j=0

P (wjX).

Now, since
∏p−1

j=0 wj = (−1)p−1 and f(X i) has degree im, we get (I) by com-

paring the leading coefficients of both sides of this equality.

In order to prove (II) we suppose that P (X) is reducible. Therefore, since

P (X) has degree im, P (X) has a root, say γ, in some extension field of Q

of degree < im over Q. Then f(X i) has also a root in Q(γ), namely γp,

contradicting the fact that f(X i) is irreducible.

Finally we prove (III). This is clear if p = 2, since P ∗(X) = P (−X) and P (X)

is irreducible; so we can assume p odd. We can also suppose that Φ(X) is irre-

ducible (see [7, pp. 62–63]), because for any factorization Φ(X) = Φ1(X)Φ2(X)

in Z[X ], from Φ(X) =
∏p−1

j=1(X − wj) and Lemma 4.2 it follows P ∗(X) =

|P (XCΦ)| = |P (XCΦ1)||P (XCΦ2 )|.
Let δ = wβ, where β is defined as in Theorem 4.3. Then, since P (β) = 0,

P ∗(δ) =
∏p

j=2 P (wjβ) = 0. Hence, P ∗(X) is irreducible if and only if the

minimum polynomial of δ over Q has degree m(p − 1).

On the other hand, we have δ ∈ Q(w, β) ⊆ Q(w, α). Furthermore, since

δp = βp = α, α ∈ Q(δ) and Q(α) = Q(β). Hence, w = β−1δ ∈ Q(δ). This

proves Q(δ) = Q(w, α), and therefore that the minimum polynomial of δ over Q

has degree

[Q(δ) : Q] = [Q(w, α) : Q(w)][Q(w) : Q] = [Q(w, α) : Q(w)](p − 1).

From the well-known theorem of natural irrationalities (see, for example, [8, p.

55]) we get [Q(w, α) : Q(w)]=[Q(α) : Q(w) ∩ Q(α)], and hence

[Q(δ) : Q]=[Q(α) : Q(w) ∩ Q(α)](p − 1).

Now (III) follows immediately from [Q(α) : Q]=m.
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Remark: In particular, P ∗(X) is irreducible if Φ(X) is irreducible and

gcd(m, p − 1) = 1.

It should be noticed that in the course of the proof of Theorem 4.3 we have

also proved, incidentally, the following result.

Corollary 4.5: Let f(X) be any irreducible polynomial in Z[X ] of positive

degree. Let r be any integer, r > 1, and let σ(r) be the square-free part of r.

The three following statements are equivalent.

(a) f(Xr) is reducible;

(b) either f(Xσ(r)) is reducible, or else 4|r and f(X4) is reducible;

(c) there exists a positive divisor of r, say t, with t prime or t = 4, such that

f(Xt) is reducible.

In particular, for any positive integer s, we have:

(i) f(X2s

) is reducible if and only if either f(X2) is reducible, or else s ≥ 2

and f(X4) is reducible;

(ii) if p is an odd prime, then

f(Xps

) is reducible if and only if f(Xp) is reducible.

For example, since Xp can be replaced by X in both sides of (1), we have:

(i) f(X2s

) is reducible if and only if there exist S0(X), S1(X) in Z[X ] and

u ∈ U with ua ∈ Z2 such that either

(−1)muf(X) = S2
0(X) − XS2

1(X),

or else

s ≥ 2 and uf(X2) = S2
0(X) − XS2

1(X).

(ii) f(X3s

) is reducible if and only if there exist S0(X), S1(X), S2(X) in

Z[X ] and u ∈ U with ua ∈ Z3 such that

uf(X) = S3
0(X) + XS3

1(X) + X2S3
2(X) − 3XS0(X)S1(X)S2(X).

On the other hand, from (II) of Theorem 4.4 it easily follows that (4) yields

a factorization of f(Xp) in Z[X ] into p irreducible factors if and only if w ∈ Z.

From the case w = 1, by using (i) and (ii) of Corollary 4.5 and the fact that

uf(X2) ∈ Z2[X ] if and only if uf(X) ∈ Z2[X ],

the following result can also be easily derived.
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Corollary 4.6: Assume χ(Z) = p is a prime number. Let f(X) be any

irreducible polynomial in Z[X ] of positive degree and let s be any positive

integer.

(a) f(Xp) is reducible if and only if there exist u ∈ U and P (X) ∈ Z[X ],

P (X) irreducible, such that

uf(Xp) = P p(X);

(b) f(Xps

) is reducible if and only if there exists u ∈ U such that

uf(X) ∈ Zp[X ].

5. Sufficient conditions

First, we use Theorem 4.3 to prove Theorem 1.1.

Proof. The conclusion follows, because, otherwise, the assumption that f(Xr)

is reducible leads to a contradiction. Indeed, in such case, from Theorem 4.3 it

follows that there exist a prime p that divides r, a unit u in U with ua ∈ Zp,

and S0(X), . . . , Sp−1(X), P (X), P ∗(X) in Z[X ] satisfying (5), (7) and (8).

Therefore, since for p odd we have ub ∈ Zp if and only if (−1)mub ∈ Zp, putting

X = 0 in both sides of (8) we contradict (B) (i) if (1) holds (since ub = (S0(0))p),

and (B) (ii) otherwise. Thus, since we have contradicted C(m, a, b, r), the proof

is complete.

At this point it should be noted that Theorem 1.1 essentially establishes that

for a given positive integer r, if an arbitrary triple (m, a, b) ∈ N × Z∗ × Z∗

satisfies C(m, a, b, r), then, for any f(X) = aXm + · · · + b ∈ Z[X ],

f(Xr) is irreducible if and only if f(X) is irreducible.

It is also of interest to determine, for a given irreducible polynomial f(X) =

aXm + · · · + b ∈ Z[X ] of positive degree m, an appropriate set of positive

integers, say N(m, a, b), such that f(Xr) is irreducible for each r ∈ N(m, a, b).

To illustrate the case that f(Xr) is irreducible for all r ∈ N we consider

Schur’s polynomials, which are defined for each positive integer m by

fm(X) = 1 + a1
X

1!
+ a2

X2

2!
+ · · · + am−1

Xm−1

(m − 1)!
± Xm

m!
for each ai ∈ Z.
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It is well-known that all these polynomials are irreducible in Q[X ] (see [4,

pp. 373–374]). Clearly

m!fm(X) = ±Xm + mam−1X
m−1 + · · · + m!a2

2!
X2 +

m!a1

1!
X + m!

is a primitive polynomial of Z[X ], so it is irreducible. Assume m ≥ 2. In some

cases (for example, when m is prime) we get that m!fm(Xr) is irreducible for

any r ∈ N from Eisenstein’s Criterion, but, in general, this does not happen

(consider, for example, m = 2n > 3 and am−1 = 1). In any case we have

±m! 6∈ Zp for each prime p, because the largest prime not exceeding m has

such a property. Then, since condition (B) of C(m, a, b, r) is always satisfied,

m!fm(Xr) is irreducible (that is, fm(Xr) is irreducible in Q[X ]) for any positive

integer r.

In order to include the precedent example in a more general result we as-

sume that a, b are arbitrary nonzero elements of Z. First, we define the (a, b)-

admissible primes. We shall say that a prime number p is (a, b)-admissible if

there is no unit u in U such that both ua, ub are in Zp. Otherwise we shall say

that p is (a, b)-inadmissible.

There is a simple procedure to determine the (a, b)-inadmissible primes. First,

we define the exponent of (a, b), say e(a, b). Assume that a has the factorization

a = uapα1
1 · · · pαs

s in Z, where ua ∈ U and (in the case a 6∈ U) p1, . . . , ps are non-

associate primes of Z with positive exponents α1, . . . , αs. Let e(a) = 0 if a = ua,

and e(a) = gcd(α1, . . . , αs), otherwise. Assume a similar factorization for b, and

let e(a, b) = 0 if e(a) = e(b) = 0 and e(a, b) = gcd(e(a), e(b)), otherwise. Then

we can establish the following.

Lemma 5.1: Let a, b be nonzero elements of Z and let p be a prime number.

Then

p is (a, b)-inadmissible if and only if p|e(a, b) and ua ≡ ub (mod Up).

Proof. To begin we express a and b in the form

a = uaa
e(a)
0 , b = ubb

e(b)
0 ,

where each one of a0, b0 is either equal 1, or a product of non-associate prime-

powers of Z.
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Assume p|e(a, b) and u−1
a ub ∈ Up, say u−1

a ub = up
0. Letting e = e(a, b) we

can write

a = uaα
e, b = ubβ

e,

where α = a
e(a)/e
0 , β = b

e(b)/e
0 . Hence,

ue−1
a a = (uaα)e, ue−1

a b = (u−1
a ub)(uaβ)e.

Thus p is (a, b)-inadmissible, because

ue−1
a a = ((uaα)e/p)p and ue−1

a b = (u0(uaβ)e/p)p.

Now assume that p is (a, b)-inadmissible. Therefore, there exist u ∈ U and

α, β ∈ Z such that ua = αp, ub = βp. Proceeding as previously with a and b,

we can write α = uαα
e(α)
0 , β = uββ

e(β)
0 , whence

uuaa
e(a)
0 = up

αα
pe(α)
0 , uubb

e(b)
0 = up

ββ
pe(β)
0 .

Hence, from the unique factorization property of Z, it follows pe(α) = e(a),

pe(β) = e(b) and both uua, uub ∈ Up. Thus, p|e(a, b) and u−1
a ub ∈ Up.

Next we define the (a, b)-admissible odd integers. For convenience we agree

that 1 is (a, b)-admissible. Let No denote the set of odd positive integers. We

shall say that r ∈ No is (a, b)-admissible if each of their prime divisors is (a, b)-

admissible. Otherwise we shall say that r is (a, b)-inadmissible.

Let No(a, b) denote the set of (a, b)-admissible odd integers. The set N(m, a, b)

of (m, a, b)-admissible integers is defined then as follows:

N(m, a, b)=







































No(a, b) if 2 is (a, (−1)mb)-inadmissible,

No(a, b) ∪ 2No(a, b) if 2 is both (a, (−1)mb)-admissible

and (a, b)-inadmissible,

∪∞
k=02

kNo(a, b) if 2 is both (a, (−1)mb)-admissible

and (a, b)-admissible.

Let r be any integer greater than 1. Writing r = 2sq, with q odd and s a

nonnegative integer, we easily get the following:

(1) If N(m, a, b) = No(a, b), then

r ∈ N(m, a, b) ⇐⇒ s = 0 and C(m, a, b, r);

(2) If N(m, a, b) = No(a, b) ∪ 2No(a, b), then

r ∈ N(m, a, b) ⇐⇒ s ≤ 1 and C(m, a, b, r);
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(3) If N(m, a, b) =
⋃∞

k=0 2kNo(a, b), then

r ∈ N(m, a, b) ⇐⇒ s ≥ 0 and C(m, a, b, r).

Hence,

r ∈ N(m, a, b) if and only if C(m, a, b, r).

Consequently we reformulate Theorem 1.1 as follows.

Theorem 5.2: Let r be any integer greater than 1 and let f(X) be an ir-

reducible polynomial in Z[X ] of positive degree m, leading coefficient a and

nonzero constant term b. Assume r ∈ N(m, a, b). Then

f(Xr) is irreducible in Z[X ].

Finally we use Lemma 5.1 to illustrate Theorem 5.2. Let Z = Z[i], where

i =
√
−1, and assume f(X) = Xm + · · · + 8i is irreducible in Z[X ].

We have U = {±1,±i}, a = 1 = ua, e(a) = 0 and

b = −(2i)3 = −(1 + i)6 with ub = −1, e(b) = 6.

Then, since e(a, b) = 6 and u−1
a ub = −1 ∈ Up for each prime p, we have that 2

and 3 are the unique (1, 8i)-inadmissible primes. On the other hand, since

(−1)mu−1
a ub = (−1)m+1 ∈ U2, we also have that 2 is (1, (−1)m8i)-inadmissible

for all m. Therefore, we have

N(m, 1, 8i) = No(1, 8i) = {r ∈ No : 3 6 |r},

which says that f(Xr) is irreducible for each positive integer r that is relatively

prime to 6.
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